Expression Σa(n) n=1(1)99 to Solve

Expression to solve:


Soln.

Multiply numerator and denominator by the conjugate to get sqrt(n)/n-sqrt(n+1)/(n+1). This is a telescoping function, which simplifies the sum to be sqrt(1)/1-sqrt(100)/100, or 9/10.

Like:

a(n) = 1/((n+1)√n + n √(n+1))=

1/((n+1)√n + n √(n+1)) * (((n+1)√n - n √(n+1)) / ((n+1)√n - n √(n+1)))

= ((n+1)√n - n √(n+1)) / (((n+1)^2)*n -(n^2)*(n+1))

= ((n+1)√n - n √(n+1)) /(((n^2 +1 +2n)*n) - (n^3+n^2))

= ((n+1)√n - n √(n+1)) / ((n^3 + n + 2n^2) - n^3 - n^2)

= ((n+1)√n - n √(n+1)) / (n^2+n)

= ((n+1)√n - n √(n+1)) / n(n+1)

= (1/√n ) - (1/ √(n+1))


Now a(1) + a(2) + … + a(99) 

=1/ √1 - 1/ √2 

+1/ √2 - 1/ √3 

+1/ √3 - 1/ √4

+1/ √4 - 1/ √5

+...

+1/√99 - 1/√100

= 1/ √1 - 1/√100

= 1- (1/10)

= 9/10 = 0.9


Answer: Sum Σa(n) for n1(1)99 will be 0.9 or 9/10.



Popular posts from this blog

हजरत मुहम्मद

दीपावली में तीनों युगों का समावेश !

Navratri (नवरात्रि), Dussehra (दशहरा)