Expression Σa(n) n=1(1)99 to Solve
Expression to solve:
Soln.
Multiply numerator and denominator by the conjugate to get sqrt(n)/n-sqrt(n+1)/(n+1). This is a telescoping function, which simplifies the sum to be sqrt(1)/1-sqrt(100)/100, or 9/10.
Like:
a(n) = 1/((n+1)√n + n √(n+1))=
1/((n+1)√n + n √(n+1)) * (((n+1)√n - n √(n+1)) / ((n+1)√n - n √(n+1)))
= ((n+1)√n - n √(n+1)) / (((n+1)^2)*n -(n^2)*(n+1))
= ((n+1)√n - n √(n+1)) /(((n^2 +1 +2n)*n) - (n^3+n^2))
= ((n+1)√n - n √(n+1)) / ((n^3 + n + 2n^2) - n^3 - n^2)
= ((n+1)√n - n √(n+1)) / (n^2+n)
= ((n+1)√n - n √(n+1)) / n(n+1)
= (1/√n ) - (1/ √(n+1))
Now a(1) + a(2) + … + a(99)
=1/ √1 - 1/ √2
+1/ √2 - 1/ √3
+1/ √3 - 1/ √4
+1/ √4 - 1/ √5
+...
+1/√99 - 1/√100
= 1/ √1 - 1/√100
= 1- (1/10)
= 9/10 = 0.9
Answer: Sum Σa(n) for n1(1)99 will be 0.9 or 9/10.